The roles of unconventional myosins in hearing and deafness.

نویسندگان

  • R T Libby
  • K P Steel
چکیده

The proper expression and function of several unconventional myosins are necessary for inner-ear function. Mutations in MYO7A and MYO15 cause deafness in humans, and mice. Whereas mutations in Myo6 cause inner-ear abnormalities in mice, as yet no human deafness has been found to the result of mutations in MYO6. In the mammalian inner ear there are at least nine different unconventional myosin isozymes expressed. Myosin 1 beta, VI, VIIa and probably XV are all expressed within a single cell in the inner ear, the hair cell. The myosin isozymes expressed in the hair cell all have unique domains of expression and in some areas, such as the pericuticular necklace, several domains overlap. This suggests that these myosins all have unique functions and that all are individually targeted within the hair cell. The mouse is proving to be a useful model organism for studying both human deafness and elucidating the normal functions of unconventional myosins in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconventional myosins, the basis for deafness in mouse and man.

Myosins are molecular motors that use the energy from ATP hydrolysis to generate force and move along actin filaments. Conventional myosin, or myosin-II, has the specialized ability to form bipolar filaments and is the basis for muscle contraction. Mutations in conventional myosins have been observed in man; dominant cardiomyopathies arise from mutations in P-cardiac myosin-II and other myosin-...

متن کامل

Unconventional myosins and the genetics of hearing loss.

Mutations of the unconventional myosins genes encoding myosin VI, myosin VIIA and myosin XV cause hearing loss and thus these motor proteins perform fundamental functions in the auditory system. A null mutation in myosin VI in the congenitally deaf Snell's waltzer mice (Myo6(sv)) results in fusion of stereocilia and subsequent progressive loss of hair cells, beginning soon after birth, thus rei...

متن کامل

Characterization of unconventional MYO6, the human homologue of the gene responsible for deafness in Snell's waltzer mice.

Deafness is the most common form of sensory impairment in humans. Mutations in unconventional myosins have been found to cause deafness in humans and mice. The mouse recessive deafness mutation, Snell's waltzer, contains an intragenic deletion in an unconventional myosin, myosin VI (locus designation, Myo6). The requirement for Myo6 for proper hearing in mice makes this gene an excellent candid...

متن کامل

MYO1F as a candidate gene for nonsyndromic deafness, DFNB15.

BACKGROUND Earlier studies have mapped the autosomal recessive nonsyndromic deafness locus, DFNB15, to chromosomes 3q21.3-q25.2 and 19p13.3-13.1, identifying one of these chromosomal regions (or possibly both) as the site of a deafness-causing gene. Mutations in unconventional myosins cause deafness in mice and humans. One unconventional myosin, myosin 1F (MYO1F), is expressed in the cochlea an...

متن کامل

Pii: S0378-1119(00)00535-7

Mutations in myosin VI (Myo6) cause deafness and vestibular dysfunction in Snell's waltzer mice. Mutations in two other unconventional myosins cause deafness in both humans and mice, making myosin VI an attractive candidate for human deafness. In this report, we re®ned the map position of human myosin VI (MYO6) by radiation hybrid mapping and characterized the genomic structure of myosin VI. Hu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Essays in biochemistry

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2000